MLOps.community

A podcast by Demetrios

Categories:

426 Episodes

  1. MLSecOps is Fundamental to Robust AISPM // Sean Morgan // #257

    Published: 30/08/2024
  2. MLOps for GenAI Applications // Harcharan Kabbay // #256

    Published: 27/08/2024
  3. BigQuery Feature Store // Nicolas Mauti // #255

    Published: 23/08/2024
  4. Design and Development Principles for LLMOps // Andy McMahon // #254

    Published: 20/08/2024
  5. Data Quality = Quality AI // AIQCON Panel

    Published: 16/08/2024
  6. The Variational Book // Yuri Plotkin // #253

    Published: 13/08/2024
  7. Vision and Strategies for Attracting & Driving AI Talents in High Growth // Panel // AIQCON

    Published: 9/08/2024
  8. Red Teaming LLMs // Ron Heichman // #252

    Published: 6/08/2024
  9. Balancing Speed and Safety // Panel // AIQCON

    Published: 2/08/2024
  10. Reliable LLM Products, Fueled by Feedback // Chinar Movsisyan // #251

    Published: 30/07/2024
  11. A Blueprint for Scalable & Reliable Enterprise AI/ML Systems // Panel // AIQCON

    Published: 26/07/2024
  12. AI Operations Without Fundamental Engineering Discipline // Nikhil Suresh // #250

    Published: 23/07/2024
  13. AI in Healthcare // Eric Landry // #249

    Published: 19/07/2024
  14. Evaluating the Effectiveness of Large Language Models: Challenges and Insights // Aniket Singh // #248

    Published: 16/07/2024
  15. Extending AI: From Industry to Innovation // Sophia Rowland & David Weik // #247

    Published: 12/07/2024
  16. Detecting Harmful Content at Scale // Matar Haller // #246

    Published: 9/07/2024
  17. All Data Scientists Should Learn Software Engineering Principles // Catherine Nelson // #245

    Published: 5/07/2024
  18. Meta GenAI Infra Blog Review // Special MLOps Podcast

    Published: 3/07/2024
  19. AI Agents for Consumers // Shaun Wei // #244

    Published: 28/06/2024
  20. ML and AI as Distinct Control Systems in Heavy Industrial Settings // Richard Howes // #243

    Published: 25/06/2024

4 / 22

Weekly talks and fireside chats about everything that has to do with the new space emerging around DevOps for Machine Learning aka MLOps aka Machine Learning Operations.

Visit the podcast's native language site