MLOps.community
A podcast by Demetrios Brinkmann
Categories:
391 Episodes
-
Handling Multi-Terabyte LLM Checkpoints // Simon Karasik // #228
Published: 30/04/2024 -
Leading Enterprise Data Teams // Sol Rashidi // #227
Published: 26/04/2024 -
The Rise of Modern Data Management // Chad Sanderson // #226
Published: 23/04/2024 -
Beyond AGI, Can AI Help Save the Planet? // Patrick Beukema // #225
Published: 19/04/2024 -
GenAI in Production - Challenges and Trends // Verena Weber // #224
Published: 17/04/2024 -
Introducing DBRX: The Future of Language Models // [Exclusive] Databricks Roundtable
Published: 12/04/2024 -
From MVP to Production // AI in Production Conference
Published: 9/04/2024 -
Data Engineering in the Federal Sector // Shane Morris // #223
Published: 5/04/2024 -
What Business Stakeholders Want to See from the ML Teams // Peter Guagenti // #222
Published: 2/04/2024 -
MLOps - Design Thinking to Build ML Infra for ML and LLM Use Cases // Amritha Arun Babu & Abhik Choudhury // #221
Published: 29/03/2024 -
4 Years of the MLOps Community // Demetrios Brinkmann // #220
Published: 26/03/2024 -
The Art and Science of Training LLMs // Bandish Shah and Davis Blalock // #219
Published: 22/03/2024 -
Security and Privacy // Day 2 Panel 1 // AI in Production Conference
Published: 19/03/2024 -
[Exclusive] Zilliz Roundtable // Why Purpose-built Vector Databases Matter for Your Use Case
Published: 15/03/2024 -
A Decade of AI Safety and Trust // Petar Tsankov // MLOps Podcast #218
Published: 12/03/2024 -
The Real E2E RAG Stack // Sam Bean, Rewind AI // #217
Published: 8/03/2024 -
Managing Data for Effective GenAI Application // Anu Arora and Anass Bensrhir // #215
Published: 5/03/2024 -
Becoming an AI Evangelist // Alex Volkov // #215
Published: 1/03/2024 -
LLM Use Cases in Production // AI in Production Conference // Panel 1
Published: 28/02/2024 -
Information Retrieval & Relevance // Daniel Svonava // #214
Published: 24/02/2024
Weekly talks and fireside chats about everything that has to do with the new space emerging around DevOps for Machine Learning aka MLOps aka Machine Learning Operations.