MLOps.community
A podcast by Demetrios Brinkmann
Categories:
391 Episodes
-
Detecting Harmful Content at Scale // Matar Haller // #246
Published: 9/07/2024 -
All Data Scientists Should Learn Software Engineering Principles // Catherine Nelson // #245
Published: 5/07/2024 -
Meta GenAI Infra Blog Review // Special MLOps Podcast
Published: 3/07/2024 -
AI Agents for Consumers // Shaun Wei // #244
Published: 28/06/2024 -
ML and AI as Distinct Control Systems in Heavy Industrial Settings // Richard Howes // #243
Published: 25/06/2024 -
Accelerating Multimodal AI // Ethan Rosenthal // #242
Published: 21/06/2024 -
Navigating the AI Frontier: The Power of Synthetic Data and Agent Evaluations in LLM Development // Boris Selitser // #241
Published: 18/06/2024 -
How to Build Production-Ready AI Models for Manufacturing // [Exclusive] LatticeFlow Roundtable
Published: 14/06/2024 -
From Robotics to Recommender Systems // Miguel Fierro // #240
Published: 11/06/2024 -
Uber's Michelangelo: Strategic AI Overhaul and Impact // #239
Published: 7/06/2024 -
AWS Tranium and Inferentia // Kamran Khan and Matthew McClean // #238
Published: 4/06/2024 -
Build Reliable Systems with Chaos Engineering // Benjamin Wilms // #237
Published: 31/05/2024 -
Managing Small Knowledge Graphs for Multi-agent Systems // Tom Smoker // #236
Published: 28/05/2024 -
Just when we Started to Solve Software Docs, AI Blew Everything Up // Dave Nunez // #235
Published: 27/05/2024 -
Open Standards Make MLOps Easier and Silos Harder // Cody Peterson // #234
Published: 21/05/2024 -
Retrieval Augmented Generation
Published: 17/05/2024 -
RecSys at Spotify // Sanket Gupta // #232
Published: 16/05/2024 -
From A Coding Startup to AI Development in the Enterprise // Ryan Carson // #231
Published: 10/05/2024 -
FedML Nexus AI: Your Generative AI Platform at Scale // Salman Avestimehr // #230
Published: 7/05/2024 -
What is AI Quality? // Mohamed Elgendy // #228
Published: 3/05/2024
Weekly talks and fireside chats about everything that has to do with the new space emerging around DevOps for Machine Learning aka MLOps aka Machine Learning Operations.