MLOps Coffee Sessions #6 // Continuous Integration for ML // Featuring Elle O'Brien
MLOps.community - A podcast by Demetrios Brinkmann
Categories:
David & Elle talk about how one of the staples of DevOps, the practice of continuous integration, can work for machine learning. Continuous integration is a tried-and-true method for speeding up development cycles and rapidly releasing software- an area where data science and ML could use some help. Making continuous integration work for ML has been challenging in the past, and we chat about new open-source tools and approaches in the Git ecosystem for leveling up development processes with big models and datasets. || Highlights || What is continuous integration and why should ML/data science teams know about it? Why ML projects tend to fall short of DevOps best practices, like frequent check-ins and testing How we're dealing with obstacles to get continuous integration working for ML Also, some fun chat about how data science roles are changing and how MLOps skills fit into the data science toolkit! The DevOps Handbook: https://amzn.to/2XH7tIT Join our slack community: https://join.slack.com/t/mlops-community/shared_invite/zt-391hcpnl-aSwNf_X5RyYSh40MiRe9Lw Follow us on Twitter: @mlopscommunity Sign up for the next meetup: https://go.mlops.community/register Connect with Demetrios on LinkedIn: https://www.linkedin.com/in/dpbrinkm/ Connect with David on LinkedIn: https://www.linkedin.com/in/aponteanalytics/ Connect with Elle on LinkedIn: https://www.linkedin.com/in/elle-o-brien-2a4586100/