160 - Leading Product Through a Merger/Acquisition: Lessons from The Predictive Index’s CPO Adam Berke

Experiencing Data w/ Brian T. O’Neill (UX for AI Products, Analytics SAAS and Data Product Management) - A podcast by Brian T. O’Neill from Designing for Analytics - Tuesdays

Categories:

Today, I’m chatting with Adam Berke, the Chief Product Officer at The Predictive Index. For 70 years, The Predictive Index has helped customers hire the right employees, and after the merger with Charma, their products now nurture the employee/manager relationship. This is something right up Adam’s alley, as he previously helped co-found the employee and workflow performance management software company Charma before both aforementioned organizations merged back in 2023.   You’ll hear Adam talk about the first-time challenges (and successes) that come with integrating two products and two product teams, and why squashing out any ambiguity with overindexing (i.e. coming prepared with new org charts ASAP) is essential during the process.    Integrating behavioral science into the world of data is what has allowed The Predictive Index to thrive since the 1950s. While this is the company’s main selling point, Adam explains how the science-forward approach can still create some disagreements–and learning opportunities–with The Predictive Index’s legacy customers. Highlights/ Skip to: What is The Predictive Index and how does the product team conduct their work (1:24)  Why Charma merged with The Predictive Index (5:11)  The challenges Adam has faced as a CPO since the Charma/Predictive Index merger (9:21) How Predictive Index has utilized behavioral science to remove the guesswork of hiring (14:22) The makeup of the product team that designs and delivers The Predictive Index's products (20:24)  Navigating the clashes between changing science and Predictive Index's legacy customers (22:37)  How The Predictive Index analyzes the quality of their products with multiple user data metrics (27:21) What Adam would do differently if had to redo the merger (37:52)  Where you can find more from Adam and The Predictive Index (41:22)   Quotes from Today’s Episode “ Acquisitions are complicated. Outside of a few select companies, there are very few that have mergers and acquisitions as a repeatable discipline. More often than not, neither [company in the merger] has an established playbook for how to do this. You’re [acquiring a company] because of its product, team, or maybe even one feature. You have different theories on how the integration might look, but experiencing it firsthand is a whole different thing.  My initial role didn’t exist in [The Predictive Index] before. The rest of the whole PI organization knows how to get their work done before this, and now there’s this new executive. There’s just tons of [questions and confusion] if you don’t go in assuming good faith and be willing to work through the bumps. It’s going to get messy.” - Adam Berke (9:41) “We integrated the teams and relaunched the product. Charma became [a part of the product called] PI Perform, and right away there was re-skinning, redesign, and some back-end architecture that needed to happen to make it its own module. From a product perspective, we’re trying to deliver [Charma’s] unique value prop. That’s when we can start [figuring out how to] infuse PI’s behavioral science into these workflows. We have this foundation. We got the thing organized. We got the teams organized. We were 12 people when we were acquired… and here we are a year later. 150+ new customers have been added to PI Perform because it’s accelerating now that we’re figuring out the product.” - Adam Berke (12:18) “Our product team has the roles that you would expect: a PM, researcher, ux design, and then one atypical role–a PhD behavioral scientist. [Our product already had] suggested topics and templates [for manager/IC one-on-one meetings], but now we want to make those templates and suggested topics more dynamic. There might be different questions to draw out a better discussion, and our behavioral scientists help us determine [those questions]... [Our behavioral scientists] look at the science, other research, and calibrate [the one-on-one questions] before we implement them into t

Visit the podcast's native language site